3.451 \(\int \frac {g+h x}{(a+b \log (c (d (e+f x)^p)^q))^2} \, dx\)

Optimal. Leaf size=224 \[ \frac {(e+f x) e^{-\frac {a}{b p q}} (f g-e h) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac {1}{p q}} \text {Ei}\left (\frac {a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}{b p q}\right )}{b^2 f^2 p^2 q^2}+\frac {2 h (e+f x)^2 e^{-\frac {2 a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac {2}{p q}} \text {Ei}\left (\frac {2 \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}{b p q}\right )}{b^2 f^2 p^2 q^2}-\frac {(e+f x) (g+h x)}{b f p q \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )} \]

[Out]

(-e*h+f*g)*(f*x+e)*Ei((a+b*ln(c*(d*(f*x+e)^p)^q))/b/p/q)/b^2/exp(a/b/p/q)/f^2/p^2/q^2/((c*(d*(f*x+e)^p)^q)^(1/
p/q))+2*h*(f*x+e)^2*Ei(2*(a+b*ln(c*(d*(f*x+e)^p)^q))/b/p/q)/b^2/exp(2*a/b/p/q)/f^2/p^2/q^2/((c*(d*(f*x+e)^p)^q
)^(2/p/q))-(f*x+e)*(h*x+g)/b/f/p/q/(a+b*ln(c*(d*(f*x+e)^p)^q))

________________________________________________________________________________________

Rubi [A]  time = 0.62, antiderivative size = 224, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 8, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {2400, 2399, 2389, 2300, 2178, 2390, 2310, 2445} \[ \frac {(e+f x) e^{-\frac {a}{b p q}} (f g-e h) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac {1}{p q}} \text {Ei}\left (\frac {a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}{b p q}\right )}{b^2 f^2 p^2 q^2}+\frac {2 h (e+f x)^2 e^{-\frac {2 a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac {2}{p q}} \text {Ei}\left (\frac {2 \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}{b p q}\right )}{b^2 f^2 p^2 q^2}-\frac {(e+f x) (g+h x)}{b f p q \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )} \]

Antiderivative was successfully verified.

[In]

Int[(g + h*x)/(a + b*Log[c*(d*(e + f*x)^p)^q])^2,x]

[Out]

((f*g - e*h)*(e + f*x)*ExpIntegralEi[(a + b*Log[c*(d*(e + f*x)^p)^q])/(b*p*q)])/(b^2*E^(a/(b*p*q))*f^2*p^2*q^2
*(c*(d*(e + f*x)^p)^q)^(1/(p*q))) + (2*h*(e + f*x)^2*ExpIntegralEi[(2*(a + b*Log[c*(d*(e + f*x)^p)^q]))/(b*p*q
)])/(b^2*E^((2*a)/(b*p*q))*f^2*p^2*q^2*(c*(d*(e + f*x)^p)^q)^(2/(p*q))) - ((e + f*x)*(g + h*x))/(b*f*p*q*(a +
b*Log[c*(d*(e + f*x)^p)^q]))

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2300

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[x/(n*(c*x^n)^(1/n)), Subst[Int[E^(x/n)*(a +
b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2310

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Dist[(d*x)^(m + 1)/(d*n*(c*x^n
)^((m + 1)/n)), Subst[Int[E^(((m + 1)*x)/n)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}
, x]

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2399

Int[((f_.) + (g_.)*(x_))^(q_.)/((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.)), x_Symbol] :> Int[ExpandIn
tegrand[(f + g*x)^q/(a + b*Log[c*(d + e*x)^n]), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g,
 0] && IGtQ[q, 0]

Rule 2400

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((
d + e*x)*(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^(p + 1))/(b*e*n*(p + 1)), x] + (-Dist[(q + 1)/(b*n*(p + 1)), I
nt[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^(p + 1), x], x] + Dist[(q*(e*f - d*g))/(b*e*n*(p + 1)), Int[(f + g*x
)^(q - 1)*(a + b*Log[c*(d + e*x)^n])^(p + 1), x], x]) /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g,
0] && LtQ[p, -1] && GtQ[q, 0]

Rule 2445

Int[((a_.) + Log[(c_.)*((d_.)*((e_.) + (f_.)*(x_))^(m_.))^(n_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Subst[Int[u*(
a + b*Log[c*d^n*(e + f*x)^(m*n)])^p, x], c*d^n*(e + f*x)^(m*n), c*(d*(e + f*x)^m)^n] /; FreeQ[{a, b, c, d, e,
f, m, n, p}, x] &&  !IntegerQ[n] &&  !(EqQ[d, 1] && EqQ[m, 1]) && IntegralFreeQ[IntHide[u*(a + b*Log[c*d^n*(e
+ f*x)^(m*n)])^p, x]]

Rubi steps

\begin {align*} \int \frac {g+h x}{\left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )^2} \, dx &=\operatorname {Subst}\left (\int \frac {g+h x}{\left (a+b \log \left (c d^q (e+f x)^{p q}\right )\right )^2} \, dx,c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac {(e+f x) (g+h x)}{b f p q \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}+\operatorname {Subst}\left (\frac {2 \int \frac {g+h x}{a+b \log \left (c d^q (e+f x)^{p q}\right )} \, dx}{b p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )-\operatorname {Subst}\left (\frac {(f g-e h) \int \frac {1}{a+b \log \left (c d^q (e+f x)^{p q}\right )} \, dx}{b f p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac {(e+f x) (g+h x)}{b f p q \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}+\operatorname {Subst}\left (\frac {2 \int \left (\frac {f g-e h}{f \left (a+b \log \left (c d^q (e+f x)^{p q}\right )\right )}+\frac {h (e+f x)}{f \left (a+b \log \left (c d^q (e+f x)^{p q}\right )\right )}\right ) \, dx}{b p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )-\operatorname {Subst}\left (\frac {(f g-e h) \operatorname {Subst}\left (\int \frac {1}{a+b \log \left (c d^q x^{p q}\right )} \, dx,x,e+f x\right )}{b f^2 p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac {(e+f x) (g+h x)}{b f p q \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}+\operatorname {Subst}\left (\frac {(2 h) \int \frac {e+f x}{a+b \log \left (c d^q (e+f x)^{p q}\right )} \, dx}{b f p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )+\operatorname {Subst}\left (\frac {(2 (f g-e h)) \int \frac {1}{a+b \log \left (c d^q (e+f x)^{p q}\right )} \, dx}{b f p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )-\operatorname {Subst}\left (\frac {\left ((f g-e h) (e+f x) \left (c d^q (e+f x)^{p q}\right )^{-\frac {1}{p q}}\right ) \operatorname {Subst}\left (\int \frac {e^{\frac {x}{p q}}}{a+b x} \, dx,x,\log \left (c d^q (e+f x)^{p q}\right )\right )}{b f^2 p^2 q^2},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac {e^{-\frac {a}{b p q}} (f g-e h) (e+f x) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac {1}{p q}} \text {Ei}\left (\frac {a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}{b p q}\right )}{b^2 f^2 p^2 q^2}-\frac {(e+f x) (g+h x)}{b f p q \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}+\operatorname {Subst}\left (\frac {(2 h) \operatorname {Subst}\left (\int \frac {x}{a+b \log \left (c d^q x^{p q}\right )} \, dx,x,e+f x\right )}{b f^2 p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )+\operatorname {Subst}\left (\frac {(2 (f g-e h)) \operatorname {Subst}\left (\int \frac {1}{a+b \log \left (c d^q x^{p q}\right )} \, dx,x,e+f x\right )}{b f^2 p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac {e^{-\frac {a}{b p q}} (f g-e h) (e+f x) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac {1}{p q}} \text {Ei}\left (\frac {a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}{b p q}\right )}{b^2 f^2 p^2 q^2}-\frac {(e+f x) (g+h x)}{b f p q \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}+\operatorname {Subst}\left (\frac {\left (2 h (e+f x)^2 \left (c d^q (e+f x)^{p q}\right )^{-\frac {2}{p q}}\right ) \operatorname {Subst}\left (\int \frac {e^{\frac {2 x}{p q}}}{a+b x} \, dx,x,\log \left (c d^q (e+f x)^{p q}\right )\right )}{b f^2 p^2 q^2},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )+\operatorname {Subst}\left (\frac {\left (2 (f g-e h) (e+f x) \left (c d^q (e+f x)^{p q}\right )^{-\frac {1}{p q}}\right ) \operatorname {Subst}\left (\int \frac {e^{\frac {x}{p q}}}{a+b x} \, dx,x,\log \left (c d^q (e+f x)^{p q}\right )\right )}{b f^2 p^2 q^2},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=\frac {e^{-\frac {a}{b p q}} (f g-e h) (e+f x) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac {1}{p q}} \text {Ei}\left (\frac {a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}{b p q}\right )}{b^2 f^2 p^2 q^2}+\frac {2 e^{-\frac {2 a}{b p q}} h (e+f x)^2 \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac {2}{p q}} \text {Ei}\left (\frac {2 \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}{b p q}\right )}{b^2 f^2 p^2 q^2}-\frac {(e+f x) (g+h x)}{b f p q \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.46, size = 269, normalized size = 1.20 \[ -\frac {(e+f x) e^{-\frac {2 a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac {2}{p q}} \left (-e^{\frac {a}{b p q}} (f g-e h) \left (c \left (d (e+f x)^p\right )^q\right )^{\frac {1}{p q}} \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right ) \text {Ei}\left (\frac {a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}{b p q}\right )-2 h (e+f x) \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right ) \text {Ei}\left (\frac {2 \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )}{b p q}\right )+b f p q (g+h x) e^{\frac {2 a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{\frac {2}{p q}}\right )}{b^2 f^2 p^2 q^2 \left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(g + h*x)/(a + b*Log[c*(d*(e + f*x)^p)^q])^2,x]

[Out]

-(((e + f*x)*(b*E^((2*a)/(b*p*q))*f*p*q*(c*(d*(e + f*x)^p)^q)^(2/(p*q))*(g + h*x) - E^(a/(b*p*q))*(f*g - e*h)*
(c*(d*(e + f*x)^p)^q)^(1/(p*q))*ExpIntegralEi[(a + b*Log[c*(d*(e + f*x)^p)^q])/(b*p*q)]*(a + b*Log[c*(d*(e + f
*x)^p)^q]) - 2*h*(e + f*x)*ExpIntegralEi[(2*(a + b*Log[c*(d*(e + f*x)^p)^q]))/(b*p*q)]*(a + b*Log[c*(d*(e + f*
x)^p)^q])))/(b^2*E^((2*a)/(b*p*q))*f^2*p^2*q^2*(c*(d*(e + f*x)^p)^q)^(2/(p*q))*(a + b*Log[c*(d*(e + f*x)^p)^q]
)))

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 328, normalized size = 1.46 \[ \frac {{\left ({\left ({\left (b f g - b e h\right )} p q \log \left (f x + e\right ) + a f g - a e h + {\left (b f g - b e h\right )} q \log \relax (d) + {\left (b f g - b e h\right )} \log \relax (c)\right )} e^{\left (\frac {b q \log \relax (d) + b \log \relax (c) + a}{b p q}\right )} \operatorname {log\_integral}\left ({\left (f x + e\right )} e^{\left (\frac {b q \log \relax (d) + b \log \relax (c) + a}{b p q}\right )}\right ) - {\left (b f^{2} h p q x^{2} + b e f g p q + {\left (b f^{2} g + b e f h\right )} p q x\right )} e^{\left (\frac {2 \, {\left (b q \log \relax (d) + b \log \relax (c) + a\right )}}{b p q}\right )} + 2 \, {\left (b h p q \log \left (f x + e\right ) + b h q \log \relax (d) + b h \log \relax (c) + a h\right )} \operatorname {log\_integral}\left ({\left (f^{2} x^{2} + 2 \, e f x + e^{2}\right )} e^{\left (\frac {2 \, {\left (b q \log \relax (d) + b \log \relax (c) + a\right )}}{b p q}\right )}\right )\right )} e^{\left (-\frac {2 \, {\left (b q \log \relax (d) + b \log \relax (c) + a\right )}}{b p q}\right )}}{b^{3} f^{2} p^{3} q^{3} \log \left (f x + e\right ) + b^{3} f^{2} p^{2} q^{3} \log \relax (d) + b^{3} f^{2} p^{2} q^{2} \log \relax (c) + a b^{2} f^{2} p^{2} q^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x+g)/(a+b*log(c*(d*(f*x+e)^p)^q))^2,x, algorithm="fricas")

[Out]

(((b*f*g - b*e*h)*p*q*log(f*x + e) + a*f*g - a*e*h + (b*f*g - b*e*h)*q*log(d) + (b*f*g - b*e*h)*log(c))*e^((b*
q*log(d) + b*log(c) + a)/(b*p*q))*log_integral((f*x + e)*e^((b*q*log(d) + b*log(c) + a)/(b*p*q))) - (b*f^2*h*p
*q*x^2 + b*e*f*g*p*q + (b*f^2*g + b*e*f*h)*p*q*x)*e^(2*(b*q*log(d) + b*log(c) + a)/(b*p*q)) + 2*(b*h*p*q*log(f
*x + e) + b*h*q*log(d) + b*h*log(c) + a*h)*log_integral((f^2*x^2 + 2*e*f*x + e^2)*e^(2*(b*q*log(d) + b*log(c)
+ a)/(b*p*q))))*e^(-2*(b*q*log(d) + b*log(c) + a)/(b*p*q))/(b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log
(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2)

________________________________________________________________________________________

giac [B]  time = 0.48, size = 1968, normalized size = 8.79 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x+g)/(a+b*log(c*(d*(f*x+e)^p)^q))^2,x, algorithm="giac")

[Out]

-(f*x + e)*b*f*g*p*q/(b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*f
^2*p^2*q^2) - (f*x + e)^2*b*h*p*q/(b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log
(c) + a*b^2*f^2*p^2*q^2) + (f*x + e)*b*h*p*q*e/(b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^
2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2) + b*f*g*p*q*Ei(log(d)/p + log(c)/(p*q) + a/(b*p*q) + log(f*x + e))*e^(-a
/(b*p*q))*log(f*x + e)/((b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^
2*f^2*p^2*q^2)*c^(1/(p*q))*d^(1/p)) - b*h*p*q*Ei(log(d)/p + log(c)/(p*q) + a/(b*p*q) + log(f*x + e))*e^(-a/(b*
p*q) + 1)*log(f*x + e)/((b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^
2*f^2*p^2*q^2)*c^(1/(p*q))*d^(1/p)) + 2*b*h*p*q*Ei(2*log(d)/p + 2*log(c)/(p*q) + 2*a/(b*p*q) + 2*log(f*x + e))
*e^(-2*a/(b*p*q))*log(f*x + e)/((b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c
) + a*b^2*f^2*p^2*q^2)*c^(2/(p*q))*d^(2/p)) + b*f*g*q*Ei(log(d)/p + log(c)/(p*q) + a/(b*p*q) + log(f*x + e))*e
^(-a/(b*p*q))*log(d)/((b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*
f^2*p^2*q^2)*c^(1/(p*q))*d^(1/p)) + b*f*g*Ei(log(d)/p + log(c)/(p*q) + a/(b*p*q) + log(f*x + e))*e^(-a/(b*p*q)
)*log(c)/((b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2)
*c^(1/(p*q))*d^(1/p)) - b*h*q*Ei(log(d)/p + log(c)/(p*q) + a/(b*p*q) + log(f*x + e))*e^(-a/(b*p*q) + 1)*log(d)
/((b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2)*c^(1/(p
*q))*d^(1/p)) + 2*b*h*q*Ei(2*log(d)/p + 2*log(c)/(p*q) + 2*a/(b*p*q) + 2*log(f*x + e))*e^(-2*a/(b*p*q))*log(d)
/((b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2)*c^(2/(p
*q))*d^(2/p)) + a*f*g*Ei(log(d)/p + log(c)/(p*q) + a/(b*p*q) + log(f*x + e))*e^(-a/(b*p*q))/((b^3*f^2*p^3*q^3*
log(f*x + e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2)*c^(1/(p*q))*d^(1/p)) - b*h
*Ei(log(d)/p + log(c)/(p*q) + a/(b*p*q) + log(f*x + e))*e^(-a/(b*p*q) + 1)*log(c)/((b^3*f^2*p^3*q^3*log(f*x +
e) + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2)*c^(1/(p*q))*d^(1/p)) + 2*b*h*Ei(2*lo
g(d)/p + 2*log(c)/(p*q) + 2*a/(b*p*q) + 2*log(f*x + e))*e^(-2*a/(b*p*q))*log(c)/((b^3*f^2*p^3*q^3*log(f*x + e)
 + b^3*f^2*p^2*q^3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2)*c^(2/(p*q))*d^(2/p)) - a*h*Ei(log(d)/p
 + log(c)/(p*q) + a/(b*p*q) + log(f*x + e))*e^(-a/(b*p*q) + 1)/((b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^
3*log(d) + b^3*f^2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2)*c^(1/(p*q))*d^(1/p)) + 2*a*h*Ei(2*log(d)/p + 2*log(c)/(
p*q) + 2*a/(b*p*q) + 2*log(f*x + e))*e^(-2*a/(b*p*q))/((b^3*f^2*p^3*q^3*log(f*x + e) + b^3*f^2*p^2*q^3*log(d)
+ b^3*f^2*p^2*q^2*log(c) + a*b^2*f^2*p^2*q^2)*c^(2/(p*q))*d^(2/p))

________________________________________________________________________________________

maple [F]  time = 0.08, size = 0, normalized size = 0.00 \[ \int \frac {h x +g}{\left (b \ln \left (c \left (d \left (f x +e \right )^{p}\right )^{q}\right )+a \right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((h*x+g)/(b*ln(c*(d*(f*x+e)^p)^q)+a)^2,x)

[Out]

int((h*x+g)/(b*ln(c*(d*(f*x+e)^p)^q)+a)^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {f h x^{2} + e g + {\left (f g + e h\right )} x}{b^{2} f p q \log \left ({\left ({\left (f x + e\right )}^{p}\right )}^{q}\right ) + a b f p q + {\left (f p q^{2} \log \relax (d) + f p q \log \relax (c)\right )} b^{2}} + \int \frac {2 \, f h x + f g + e h}{b^{2} f p q \log \left ({\left ({\left (f x + e\right )}^{p}\right )}^{q}\right ) + a b f p q + {\left (f p q^{2} \log \relax (d) + f p q \log \relax (c)\right )} b^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x+g)/(a+b*log(c*(d*(f*x+e)^p)^q))^2,x, algorithm="maxima")

[Out]

-(f*h*x^2 + e*g + (f*g + e*h)*x)/(b^2*f*p*q*log(((f*x + e)^p)^q) + a*b*f*p*q + (f*p*q^2*log(d) + f*p*q*log(c))
*b^2) + integrate((2*f*h*x + f*g + e*h)/(b^2*f*p*q*log(((f*x + e)^p)^q) + a*b*f*p*q + (f*p*q^2*log(d) + f*p*q*
log(c))*b^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {g+h\,x}{{\left (a+b\,\ln \left (c\,{\left (d\,{\left (e+f\,x\right )}^p\right )}^q\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g + h*x)/(a + b*log(c*(d*(e + f*x)^p)^q))^2,x)

[Out]

int((g + h*x)/(a + b*log(c*(d*(e + f*x)^p)^q))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {g + h x}{\left (a + b \log {\left (c \left (d \left (e + f x\right )^{p}\right )^{q} \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x+g)/(a+b*ln(c*(d*(f*x+e)**p)**q))**2,x)

[Out]

Integral((g + h*x)/(a + b*log(c*(d*(e + f*x)**p)**q))**2, x)

________________________________________________________________________________________